



# Late loss and late catch-up after polymerfree and polymer-containing DES

angiographic versus clinical long term results

Robert A. Byrne MB MRCPI

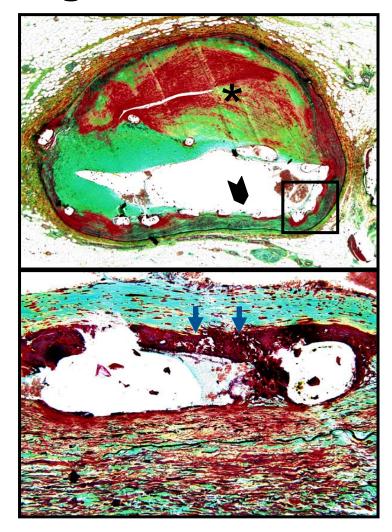
Deutsches Herzzentrum, Technische Universität, Munich





# **Agenda**

- 1. DES registry from Munich
  - Serial angiographic FU at 6-8 months and 2 years
  - Clinical FU to 2 years
- 2. Two-year angiographic and clinical follow-up of ISAR-TEST-3
  - BP DES vs Cypher vs PF DES


# **Delayed Arterial Healing**

Incomplete Endothelialisation

Late Fibrin
Deposition

Chronic Inflammation

**Platelet Activation** 



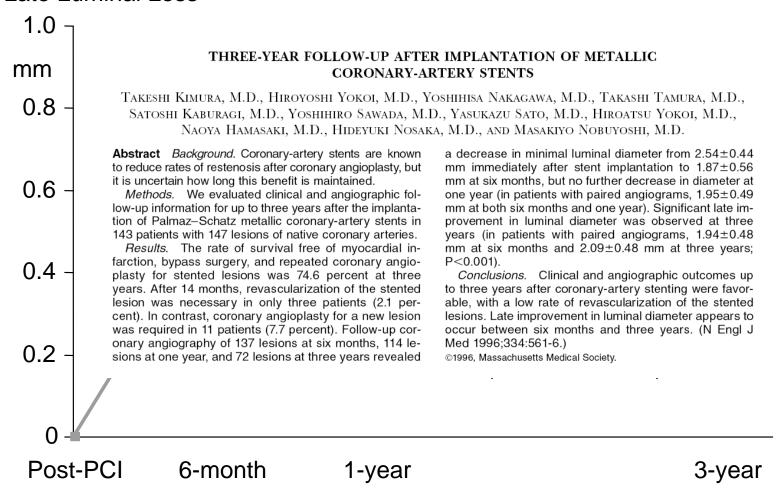




# **Consequences of DAH**

Excess of adverse events *late* (>12 months) after implantation in comparison with BMS




Late Stent Thrombosis

Delayed Loss of Antirestenotic Efficacy

Inflammatory Response to Durable Polymer Plays a Central Role

# **Delayed Late Loss in BMS**





Kimura NEJM 1996



JACC: CARDIOVASCULAR INTERVENTIONS © 2009 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

VOL. 2, NO. ISSN 1936-8798/09 DOI: 10.1016/j.jcin.2008

## **Durability of Antirestenotic Efficacy** in Drug-Eluting Stents With and Without Permanent Polymer

Robert A. Byrne, MB,\* Raisuke Iijima, MD,\* Julinda Mehilli, MD,\* Susanne Pinieck, RN,\* Olga Bruskina, MD,\* Albert Schömig, MD,\*† Adnan Kastrati, MD\*

Munich, Germany

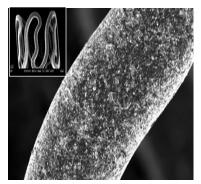
**Objectives** We sought to assess changes in antirestenotic efficacy of drug-eluting stents (DES) by restudying subjects at 2 time points after coronary stenting (6 to 8 months and 2 years) and to compare differences in time courses of late luminal loss (LLL) between 3 different DES platforms in use at our institution.

Background DES therapy is associated with low levels of LLL at 6 to 8 months. The temporal course of neointimal formation after this time point remains unclear.

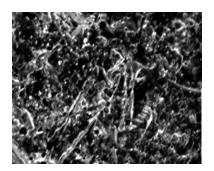
Methods This prospective, observational, systematic angiographic follow-up study was conducted at 2 centers in Munich, Germany. Patients underwent stenting with permanent-polymer rapamycineluting stents (RES), polymer-free RES, or permanent-polymer paclitaxel-eluting stents (PES). The primary end point was delayed LLL (the difference in in-stent LLL between 6 to 8 months and 2 years).






# Study Design

- 1. Permanent polymer sirolimus-eluting stent (Cypher)
  - 2. Polymer-free sirolimus-eluting stent (PF SES)
- 3. Permanent polymer paclitaxel-eluting stent (Taxus)






# **ISAR Stent Types**



100 µm



10 µm

#### Stent Platform:

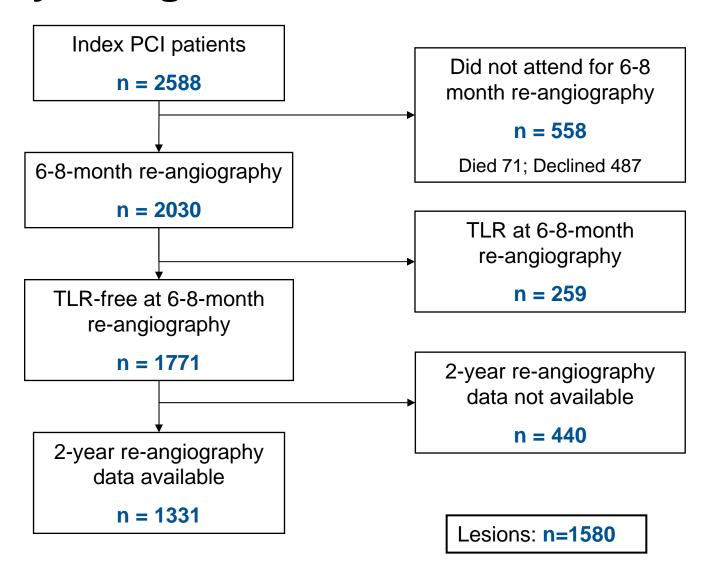
Thin-strut (87µm) microporous 316L Stainless Steel

#### **Active Drug:**

#### **Sirolimus**

#### Coating:

- 1. PF DES: No polymer; 480µg/cm<sup>2</sup> sirolimus
- 2. BP DES: Biodegradable polymer + shellac resin; 180µg/cm² sirolimus
- **3. Dual DES**: **No polymer**; Probucol 120μg/cm<sup>2</sup> + sirolimus 120μg/cm<sup>2</sup>


Developed in the setting of the ISAR-Project supported by the Bayerische Forschungsstiftung

Wessely ATVB 2005; Hausleiter EHJ 2005; Mehilli Circulation 2006; Mehilli EHJ 2008; Steigerwald Biomaterials 2009; Byrne EHJ 2009; Byrne EHJ 2009

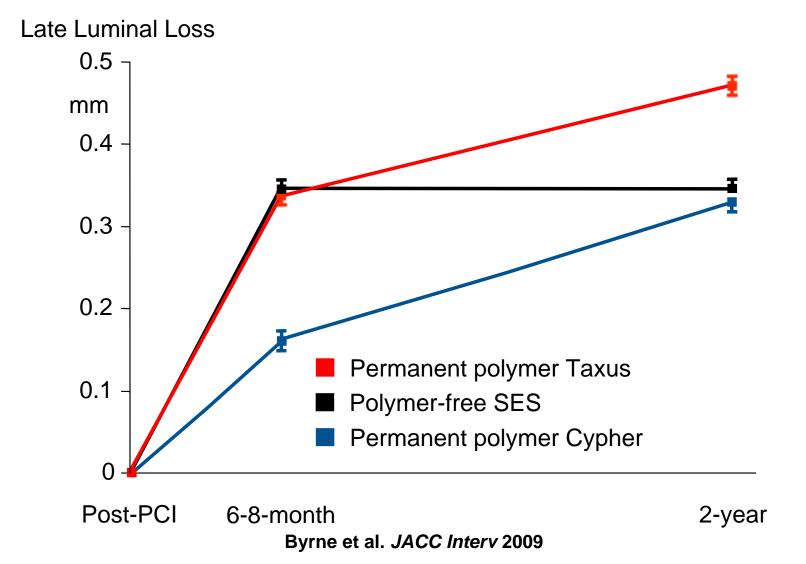




# **Study Design**






## **Baseline Characteristics**

|                   | Cypher PP SES (n=1036) | PF SES<br>ISAR<br>(n=565) | Taxus PP PES (n=740) |
|-------------------|------------------------|---------------------------|----------------------|
| Vessel size, mm   | <b>2.70</b> ±.51       | <b>2.70</b> ±.49          | 2.71±.51             |
| Lesion length, mm | 14.1±7.8               | 13.6±6.5                  | 13.4±7.7             |
| Diabetes mellitus | 29.6%                  | 27.5%                     | 28.1%                |



# 2-Year Angiographic Outcomes

n=1580





## **Late Lumen Loss**

**Cypher** (n=1036)

PF SES (n=565)

**Taxus** (n=740)

**Early**, mm 6-8 months

0.16±.37\*

0.35±.46

 $0.34 \pm .44$ 

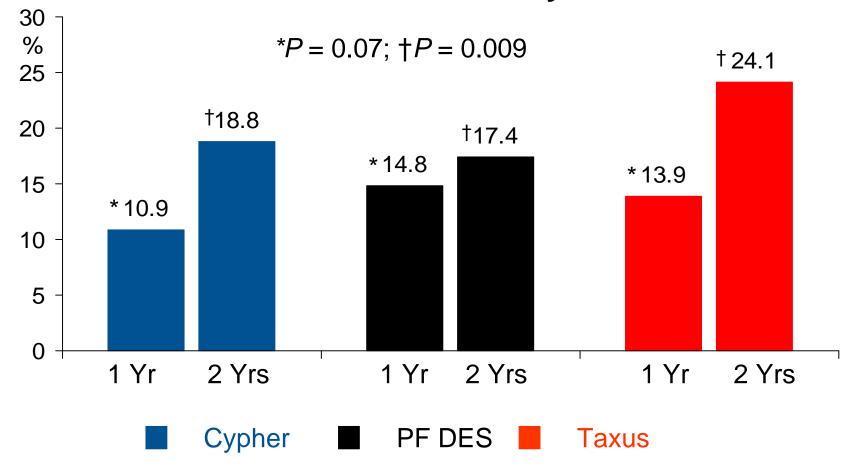
**Delayed**, mm 6-8 months → 2 years

0.17±0.50

0.01±.42†

0.13±.50

<sup>\*</sup> p<.001 in favour Cypher; † p<.001 in favour PF SES






#### **Clinical Restenosis**

n=2030

#### TLR at 6-8 months and 2 years



#### **Newer DES Platforms**

G2

Endeavor; Resolute

Xience-V

Next Gen Biodegradable Polymer DES

Bioabsorbable Stent DES

Byrne, Joner, Kastrati Minerva Cardioangiol 2009



2.

Interventional cardiology

# Randomised trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis: 2-year follow-up results

R A Byrne, <sup>1</sup> S Kufner, <sup>1</sup> K Tiroch, <sup>2</sup> S Massberg, <sup>1</sup> K-L Laugwitz, <sup>2</sup> A Birkmeier, <sup>1</sup> S Schulz, <sup>1</sup> J Mehilli, <sup>1</sup> for the Intracoronary Stenting and Angiographic Restenosis—Test Efficacy of Rapamycin-Eluting STents with Different Polymer Coating Strategies (ISAR-TEST-3) Investigators

<sup>1</sup> Deutsches Herzzentrum, Technische Universität, Munich, Germany; <sup>2</sup> 1.Medizinische Klinik, Klinikum rechts der Isar, Technische Universität, Munich, Germany

Correspondence to: Dr Robert A Byrne, ISAResearch Centre, Deutsches Herzzentrum München, Lazarettstrasse 36, 80636 Munich, Germany; byrne@dhm.mhn.de

Accepted 30 June 2009 Published Online First 13 July 2009

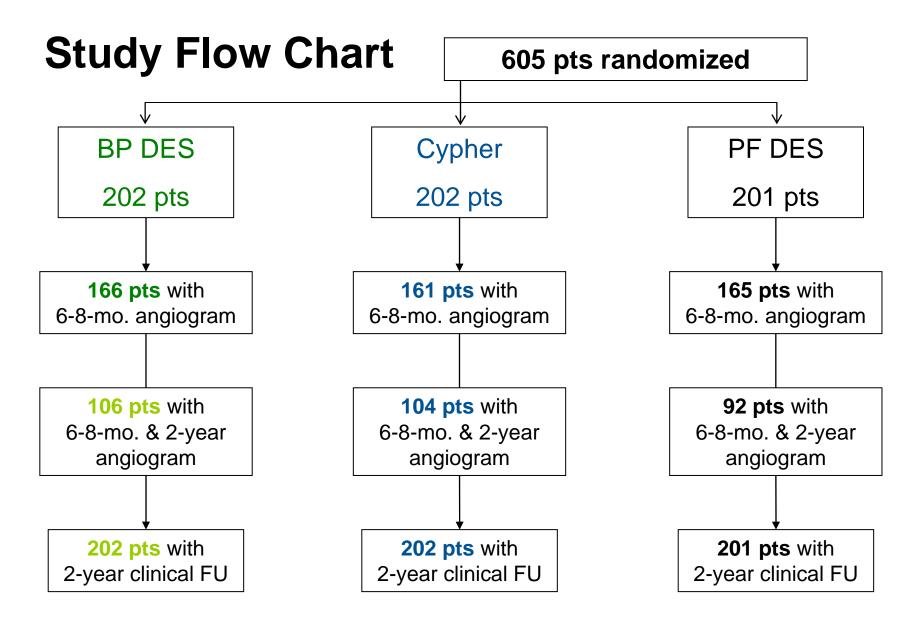
#### **ABSTRACT**

**Background:** Drug-eluting stent (DES) platforms devoid of durable polymer have potential to enhance long-term safety outcomes. The ISAR-TEST-3 study was a randomised trial comparing three rapamycin-eluting stents with different coating strategies. The present study examined 2-year outcomes of these patients and is the first large-scale trial to report longer-term outcomes with biodegradable polymer and polymer-free DES.

**Methods:** Patients with de novo coronary lesions in native vessels were randomly assigned to receive biodegradable polymer (BP; n=202), permanent polymer (PP; Cypher; n=202) and polymer-free (PF; n=201) stents. The 2-year endpoints of interest were target lesion revascularisation (TLR), death/myocardial infarction (MI), stent thrombosis and delayed angiographic late luminal loss (LLL) between 6–8 months and 2 years.

The Intracoronary Stenting and Angiographic Restenosis-Test Efficacy of Rapamycin-Eluting Stents with Different Polymer Coating Strategies (ISAR-TEST-3) study was a two-centre assessorblinded randomised study examining the safety and efficacy of both novel polymer-free (PF) and biodegradable polymer (BP) rapamycin-eluting stents in comparison with the commercially available permanent polymer rapamycin-eluting stent (PP).8 Results up to 1 year indicated that, whereas the antirestenotic efficacy of the PF stent was inferior to that of the PP platform, the BP stent achieved a similar antirestenotic efficacy to the PP stent. Potential benefits of DES platforms devoid of permanent polymer may be expected to appear only with longer-term follow-up. 12 13 The current analysis is the first large-scale study to






# **ISAR-TEST-3 Study Design**

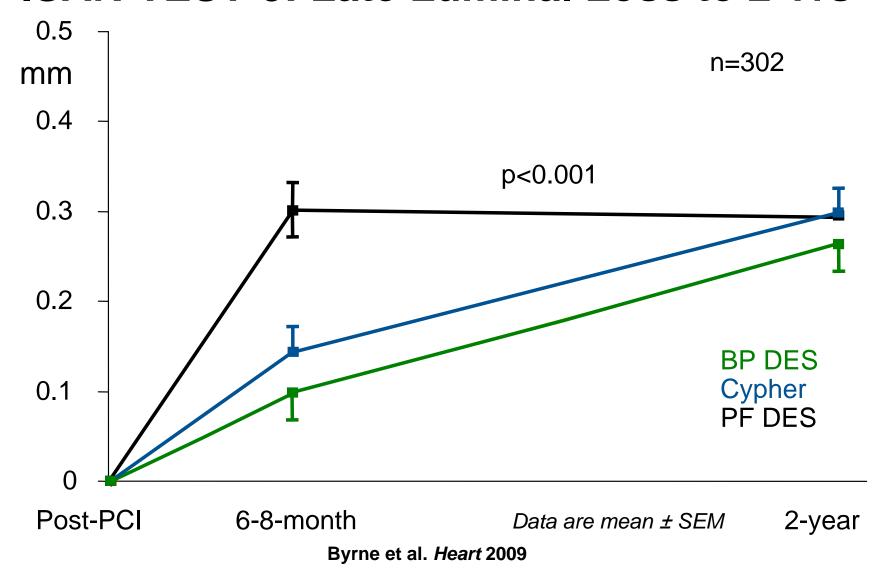
- 1. Biodegradable polymer rapamycin-eluting stent (BP DES)
  - 2. Permanent polymer sirolimus-eluting stent (Cypher)
    - 3. polymer-free rapamycin-eluting stent (PF DES)











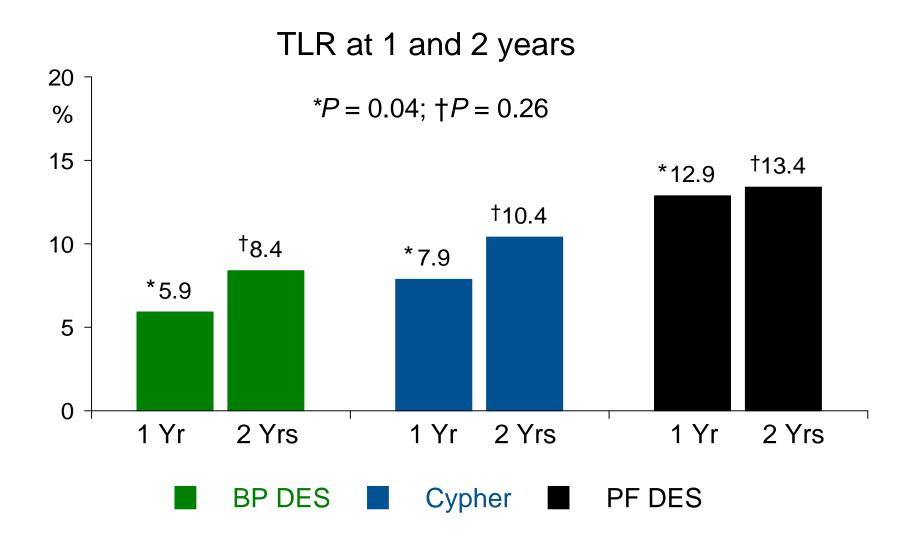

## **Baseline Characteristics**

|                   | BP SES<br>(n=202) | Cypher (n=202)   | PF SES<br>(n=201) |
|-------------------|-------------------|------------------|-------------------|
| Vessel size, mm   | <b>2.74</b> ±.51  | <b>2.75</b> ±.51 | 2.74±.45          |
| Lesion length, mm | 13.9±7.2          | <b>14.6</b> ±5.1 | 14.3±7.0          |
| Diabetes mellitus | 29%               | 26%              | 27%               |



## **ISAR-TEST-3: Late Luminal Loss to 2 Yrs**






## Late lumen loss

<sup>\*</sup> p<.001 for PF DES vs. Cypher and vs. BP DES



#### **Clinical Restenosis**

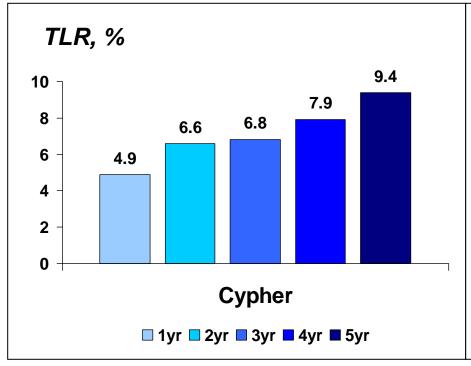






#### Limitations

- Comparative analysis of delayed late loss ("late luminal creep") is limited by the exclusion of patients who undergo TLR at 6-8 months
  - time zero is considered reset
  - inextricably related to efficacy of the study devices
- Any comparison of delayed late loss should be made in association with overall 2-year TLR data
- Interpretation of differences in "late luminal creep" should be considered hypothesis generating





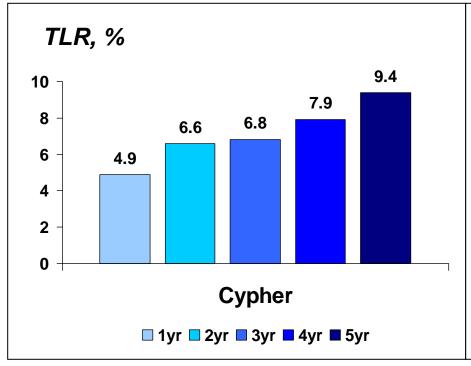


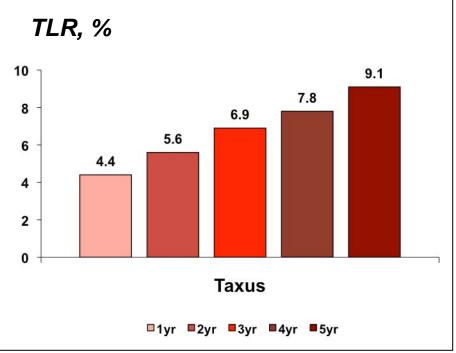
# Conclusions from ISAR experience

- DES therapy is associated with delayed late loss or "late luminal creep" between 6-8 months and 2 years
- This delayed late loss has been observed with...
  - Permanent polymer DES (Cypher and Taxus)
  - Biodegradable polymer DES
- ...but not with polymer-free DES
- Data on delayed late loss with the Endeavor and Xience-V stents will be available later this year

#### **Conclusions**







SIRIUS TAXUS IV

Is our Understanding of DES-Restenosis Changing?

Finn et al. JACC Interv 2009

# **Delayed Loss of AR Efficacy**





**SIRIUS** 

TAXUS IV

Is our Understanding of DES-Restenosis Changing?

Finn et al. JACC Interv 2009





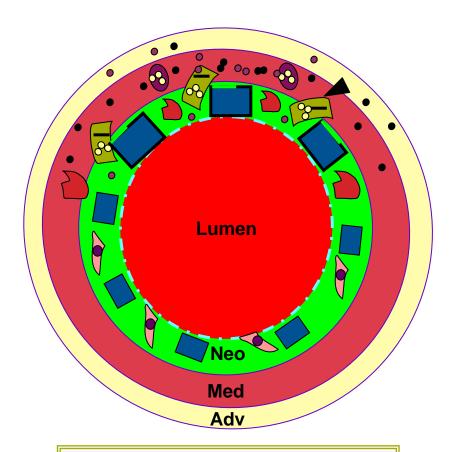
# **ISAR-TEST-2** Two-year FU

- 1. Permanent polymer sirolimus-eluting stent (Cypher)
- 2. Polymer-free sirolimus- and probucol-eluting stent (Dual-DES)
- 3. Permanent polymer zotarolimus-eluting stent (Endeavor)



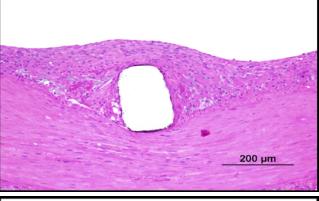


## **Thank You**



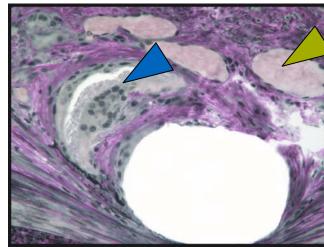

Acknowledgement: ESC Research Fellowship in Atherothrombosis

Robert A. Byrne, Deutsches Herzzentrum, Munich byrne@dhm.mhn.de





# **Arterial Response to BP**




Biodegradable Polymers

Udipi, Byrne, Joner Confluence 2009





